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In this talk we consider optimal control of gradient systems with the Ginzburg-Landau free energy
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2 + vu, ε > 0. Examples of gradients systems are
Schlögl equation[2] arising in chemical waves and Allen-Cahn equation [1], basic model for diffuse
interface problems. Gradient systems are characterized by energy decreasing property F (u(t)) ≤
F (u(s)), s > t. Numerical integrators that preserve the energy decreasing property in the discrete
setting are called energy or gradient stable. It is known that the implicit Euler method is first order
unconditionally energy stable method. The second order unconditionally energy stable method is
average vector field (AVF) integrator [4]. We discretize the gradients systems by discontinuous
Galerkin method [6] in space and by the implicit Euler method and AVF integrator in time. We
solve optimal control problems for the Schlögl equation and Allen-Cahn equation with travelling
and spiraling waves using sparse [3] and H1 regularized [5] controls.
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