27th IFIP TC7 Conference 2015 on System Modelling and Optimization
Model reduction and uncertainty quantification for parameter estimation

Sparsity formulations in OED

Daniel Walter

Technische Universität München
walter@ma.tum.de

Abstract: In this talk we consider Optimal Design of Experiments (OED) for a parameterdependent model given by a linear, elliptic equation. As a simple example we consider

$$
\begin{aligned}
-\triangle y+q y & =f \\
y=0 & \text { on } \Omega \\
& \text { on }
\end{aligned}
$$

with a positive constant q and an $L^{2}(\Omega)$ function f. However, we will also discuss more general situations with parameters in \mathbb{R}^{n}.

To fit the model to the reality, the true parameter q^{*} has to be estimated indirectly, e.g. from pointwise measurements of the state. Due to measurement errors such an estimate can be seen as a realization of a random variable and the size of its confidence regions is an indicator for the quality of this estimate. An important task in OED is to find an optimal design ω (optimal locations for the sensors and an optimal number of measurements) to obtain estimates which are more reliable. This is usually done by minimizing a suitable function on the eigenvalues of the linearized Fisher-information matrix $C(\omega)$ over a set of possible experimental designs.
In our approach, possible designs ω are modelled by the space of finite Radon-measures, which allows to consider pointwise measurements (Dirac-Deltas) at arbitrary spatial points as well as continous measurement methods. The costs of the measurements are represented by the total-variation norm. This leads to the optimal control problem

$$
\begin{gathered}
\min _{\omega \in M(\Omega)} \operatorname{tr}\left(C(\omega)^{-1}\right)+\beta\|\omega\|_{M(\Omega)} \\
\text { s.t } \quad \omega \geq 0
\end{gathered}
$$

We investigate existence of solutions and derive optimality conditions for this problem, leading to a description of the structure of optimal designs. Furthermore we study the dependence of optimal solutions on β and prove the existence of solutions consisting of finitely many Dirac-Deltas.
Finally, we propose an iterative first-order algorithm which adds/removes Delta peaks to/from the previous iterate in every step.

