27th IFIP TC7 Conference 2015 on System Modelling and Optimization

Recent results on analysis and optimal control of phase field models

Optimal control of doubly nonlinear evolution equations governed by subdifferentials

Noriaki Yamazaki

Department of Mathematics, Faculty of Engineering, Kanagawa University

noriaki@kanagawa-u.ac.jp

Abstract: In this talk, we consider the following doubly nonlinear evolution equations governed by subdifferentials, denoted by (P):

Problem (P).

$$\begin{cases} \partial \psi^t(u'(t)) + \partial \varphi(u(t)) + g(u(t)) \ni f(t) \text{ in } H, \quad 0 < t < T, \\ u(0) = u_0 \text{ in } H, \end{cases}$$

where H is a real Hilbert space, $\psi^t : H \to \mathbb{R} \cup \{\infty\}$ is a time-dependent proper (i.e., $-\infty < \psi^t(\cdot) \le \infty$, not identically ∞), l.s.c. (lower semi-continuous) and convex function, $\varphi : H \to \mathbb{R} \cup \{\infty\}$ is a time-independent proper, l.s.c. and convex function, $g(\cdot)$ is a Lipschitz operator in H, f is a given H-valued function and u_0 is a given initial value in H.

The main aim of this talk is to discuss the optimal source control problem of (P). In fact, we show the existence of optimal control f^* that minimizes the nonlinear cost functional. Also, we give some applications of our abstract results.

This is a joint work with M. H. Farshbaf-Shaker (WIAS Berlin).