27th IFIP TC7 Conference 2015 on System Modelling and Optimization
Some aspects of Variational Analysis and Applications

Strong and weak convexity: application to the gradient projection algorithm

Maxim V. Balashov
MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY

balashov73@mail.ru

Abstract: We shall consider the next problems in a real Hilbert space H :

$$
\begin{equation*}
\max (\text { or } \min)_{x \in A} f(x) \tag{1}
\end{equation*}
$$

where $f: H \rightarrow \mathbb{R}$ is a continuous function, $A \subset H$ is a closed convex bounded subset.
Theorem 1 ([1]). Suppose that a set $A \subset H$ is strongly convex of radius $r>0$, a function $f: H \rightarrow \mathbb{R}$ has the Lipschitz continuous gradient on the set A with constant $C>0, r<\frac{m}{C}$. Then the for any initial point $x_{0} \in \partial A$ the iteration process

$$
x_{k+1}=\arg \max _{x \in A}\left(f^{\prime}\left(x_{k}\right), x\right), \quad k=0,1,2,3, \ldots
$$

converges to the (unique) solution $z_{0} \in A$ of the problem (1-max case) with the rate of geometric progression with common ratio $q=\frac{r C}{m}<1$: $\left\|x_{k+1}-z_{0}\right\| \leq q\left\|x_{k}-z_{0}\right\|$, for all k.
Theorem 2. Let $A \subset H$ be a proximally smooth subset with constant of proximal smoothness $R>0$. Let $f: H \rightarrow \mathbb{R}$ be a strongly convex function with constant of strong convexity $\varkappa>0$. Let $\alpha \in \mathbb{R}, \mathbb{L}_{f}(\alpha) \cap A \neq \emptyset$ and the function f has the Lipshcitz continuous gradient with constant $L>0$ on the set $\mathbb{L}_{f}(\alpha)$. (Here $\left.\mathbb{L}_{f}(\alpha)=\{x \in H \mid f(x) \leq \alpha\}\right)$. Put $m=\sup _{x \in \mathbb{L}_{f}(\alpha)}\left\|f^{\prime}(x)\right\|$. Suppose that $\frac{m}{\varkappa}<R$. Then for any initial point $x_{0} \in A \cap \mathbb{L}_{f}(\alpha)$ the iteration process $x_{k+1}=P_{A}\left(x_{k}-t f^{\prime}\left(x_{k}\right)\right), \quad t=\frac{\varkappa-\frac{m}{R}}{L^{2}-\frac{x_{m}}{R}}$, converges to the unique solution $z_{0} \in A$ of the problem (1-min case) with the rate of geometric progression with common ratio

$$
\begin{equation*}
q(t)=\frac{R}{R-t m} \sqrt{1-2 t \varkappa+t^{2} L^{2}} \in(0,1), \quad t=\frac{\varkappa-\frac{m}{R}}{L^{2}-\frac{\varkappa m}{R}} . \tag{2}
\end{equation*}
$$

References

[1] M. V. Balashov, Maximization of a function with Lipschitz continuous gradient, Fundam. Prikl. Mat., 18:5 (2013), 17-25 (in Russian).

