27th IFIP TC7 Conference 2015 on System Modelling and Optimization
Some aspects of Variational Analysis and Applications

Gradient projection method for convex functions and strongly convex sets

M. O. Golubev

Moscow Institute of Physics and Technology (State University)
maksimkane@mail.ru

Abstract

Let \mathbb{H} be the real Hilbert space. $\langle p, x\rangle$ is scalar product for vectors $p, x \in \mathbb{H}$. Let $B_{R}(x)=\{y \in \mathbb{H}:\|y-x\| \leq R\}$. We denote the boundary of the set $A \subset \mathbb{H}$ by ∂A. The metric projection of the point $x \in \mathbb{H}$ on the set $A \subset \mathbb{H}$ is defined as follows: $P_{A}(x)=\left\{y \in A \mid\|x-y\|=\inf _{a \in A}\|x-a\|\right\}$. We denote the normal cone to the closed convex set A at the point $a \in A$ by $N(A ; a)$, i.e. $N(A ; a)=\left\{p \in \mathbb{H}:\langle p, a\rangle=\sup _{x \in A}\langle p, x\rangle\right\}$.

Definition. [1, Definition 4.3.1] A nonempty set $A \subset \mathbb{H}$ is called strongly convex of radius R, if it can be represented as the intersection of closed balls of radius $R>0$.

Consider the minimization problem: $\min _{x \in A} f(x)$. We consider the standard gradient projection algorithm: $x_{1} \in \partial A, x_{k+1}=P_{A}\left(x_{k}-\alpha_{k} f^{\prime}\left(x_{k}\right)\right), \quad \alpha_{k}>0$.

Suppose that:
(i) $A \subset \mathbb{H}$ is strongly convex with radius R,
(ii) $f: \mathbb{H} \rightarrow \mathbb{R}$ is convex, differentiable and the gradient $f^{\prime}(x)$ satisfies the Lipschitz condition with constant $M>0$,
(iii) for any $k \in \mathbb{N}$ there exists a unit vector $n\left(x_{k}\right) \in N\left(A ; x_{k}\right)$ such that $\left\langle n\left(x_{k}\right), f^{\prime}\left(x_{k}\right)\right\rangle \leq 0$,
(iv) the problem (1) has a unique solution $x_{*} \in \partial A$.

Theorem 1. Suppose that conditions (i)-(iv) hold. Then for $\alpha_{k}=\alpha \in\left(0, \frac{2}{M}\right]$ we have the following estimate of the convergence rate of the algorithm:

$$
\left\|x_{k+1}-x_{*}\right\| \leq \sqrt[4]{\frac{R^{2}}{R^{2}+\alpha^{2}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}}}\left\|x_{k}-x_{*}\right\|
$$

The result is obtained under the supervision of professor Maxim V. Balashov.
Supported by the Russian Foundation for Basic Research, grant 13-01-00295.

1. E. S. Polovinkin, M. V. Balashov. Elements of convex and strongly convex analysis. Fizmatlit, Moscow, 2007 (in Russian).
