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Abstract: Let H be the real Hilbert space. 〈p, x〉 is scalar product for vectors p, x ∈ H.
Let BR(x) = {y ∈ H : ‖y − x‖ ≤ R}. We denote the boundary of the set A ⊂ H by
∂A. The metric projection of the point x ∈ H on the set A ⊂ H is defined as follows:
PA(x) = {y ∈ A|‖x − y‖ = inf

a∈A
‖x − a‖}. We denote the normal cone to the closed convex

set A at the point a ∈ A by N(A; a), i.e. N(A; a) = {p ∈ H : 〈p, a〉 = sup
x∈A
〈p, x〉}.

Definition. [1, Definition 4.3.1] A nonempty set A ⊂ H is called strongly convex of radius
R, if it can be represented as the intersection of closed balls of radius R > 0.

Consider the minimization problem: min
x∈A

f(x). We consider the standard gradient projec-

tion algorithm: x1 ∈ ∂A, xk+1 = PA(xk − αkf
′(xk)), αk > 0. (1)

Suppose that:

(i) A ⊂ H is strongly convex with radius R,

(ii) f : H→ R is convex, differentiable and the gradient f ′(x) satisfies the Lipschitz condi-
tion with constant M > 0,

(iii) for any k ∈ N there exists a unit vector n(xk) ∈ N(A;xk) such that 〈n(xk), f ′(xk)〉 ≤ 0,

(iv) the problem (1) has a unique solution x∗ ∈ ∂A.

Theorem 1. Suppose that conditions (i)-(iv) hold. Then for αk = α ∈
(
0, 2

M

]
we have the

following estimate of the convergence rate of the algorithm:

‖xk+1 − x∗‖ ≤ 4

√
R2

R2 + α2‖f ′(xk)‖2
‖xk − x∗‖.
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