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Abstract: A quasiball in a Banach space E is a convex closed set M ⊂ E such that 0 ∈
int M and M 6= E. The Minkowski functional µM(x) = inf

{
t > 0

∣∣ x ∈ tM} of the quasiball
is the nonsymmetric seminorm. The M-distance from a set C to a set A is %M(C,A) =

inf
c∈C, a∈A

µM(c−a). The M-projection of x onto A is the set PM(x,A) = A
⋂

(x−%M(x,A)M).

The set C ⊂ E is called strongly convex with respect to the quasiball M ⊂ E if C is convex,
closed and there exists a set C1 ⊂ E such that C + C1 = M . A set A ⊂ E is called
weakly convex with respect to the quasiball M ⊂ E if a ∈ PM(a+ z, A), ∀a ∈ A, ∀z ∈
N1

M(a,A), where N1
M(a,A) = {z ∈ ∂M | ∃t > 0 : a ∈ PM(a+ tz, A)}. A set M ⊂ E is called

parabolic, if for any vector b ∈ E the set
(
b+ 1

2
M
)
\M is bounded. A set M ⊂ E is called

boundedly uniformly convex, if it is convex and limt→+0 δM(t, R) = 0 for any R > 0, where
δM(t, R) = sup

{
‖a− b‖

∣∣ a, b ∈M ∩BR(0), infx∈∂M
∥∥a+b

2
− x
∥∥ < t

}
, t ≥ 0.

Theorem 1 Let E be a Banach space and the quasiball M ⊂ E be parabolic and boundedly
uniformly convex. Let 0 < r < R, the sets A,C ⊂ E be closed, A be weakly convex with
respect to the set RM , C be strongly convex with respect to the set (−rM), A+R int M 6= E.
Let at least one of the following statements hold
1) %M(C,A) > 0 or
2) int C 6= ∅, A ∩ int C = ∅ and the quasiball M is uniformly smooth, the set A is M-
quasibounded, i.e. for any point x ∈ E \ A we have %M(x,A) > 0 and for any R > 0 the
inequality supa∈∂A∩BR(0) sup

z∈N1
M (a,A)

‖z‖ < +∞ holds.

Then there exist a, c ∈ E such that int C ⊂ c− int rM ⊂ a− int RM ⊂ E \ A.

This theorem is an analog of the famous Hahn-Banach separation theorem. Such an approach
allows us to apply the methods of proximal analysis to the epigraphs of functions and to
obtain the conditions of well-posedness for optimization problems of the infimal convolution
type. The result was obtained under the supervision of professor G.E. Ivanov.
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