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Abstract: Let X be a real Banach space. We use 〈p, x〉 to denote the value of functional

p ∈ X∗ at the vector x ∈ X. Let ρX(τ) = sup
{
‖x+y‖

2
+ ‖x−y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
. The

function ρX(·) : R+ → R+ is referred to as the module of smoothness of X. We denote by
BR(c) a closed ball with center c and radius R.
A set A ⊂ X is said to be proximally smooth with constant R if the distance function
x→ ρ(x,A) is continuously differentiable on set U(R,A) = {x ∈ X : 0 < ρ(x,A) < R} .
By M denote the set of convex and Lipschitz continuous functions ψ : [0,+∞) → [0,+∞)
such that ψ(0) = 0.
A set A ⊂ X is said to be ψ-hypomotonic with constant R if for some ε > 0 for any x1, x2 ∈ A
such that ‖x1 − x2‖ ≤ ε and for any p1 ∈ N(x1, A), p2 ∈ N(x2, A), such that ‖p1‖ = ‖p2‖ = 1
the following inequality is true

〈p2 − p1, x2 − x1〉 ≥ −Rψ
(
‖x2 − x1‖

R

)
,

where N(a0, A) = {p ∈ X∗ : ∀ε > 0 ∃ δ > 0 : ∀a ∈ A ∩Bδ(a0) 〈p, a− a0〉 ≤ ε ‖a− a0‖}.
We denote by ΩP (R) (Ωψ

N(R)) the set of all closed proximally smooth (ψ-hypomotonic) sets
with constant R in X.

Theorem 1 Let X be a uniformly convex and uniformly smooth Banach space and ψ ∈M,
then the following conditions are equivalent:
1) there exists k > 0 such that ΩP (1) ⊂ Ωkψ

N (1);
2) ρX(τ) = O(ψ(τ)) (τ → 0).

Theorem 2 Let X be a uniformly convex and uniformly smooth Banach space and ψ ∈M,
then the following conditions are equivalent:
1) there exists k1 > 0, k2 > 0 such that Ωk1ψ

N (1) ⊂ ΩP (1) ⊂ Ωk2ψ
N (1);

2) X is isomorphic to the Hilbert space.
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