27th IFIP TC7 Conference 2015 on System Modelling and Optimization

Some aspects of Variational Analysis and Applications

Hypomonotonicity of the normal cone and proximal smoothness¹

Grigory M. Ivanov

Moscow Institute of Physics and Technology, National Research University Higher School of Economics

grimivanov@gmail.com

Abstract: Let X be a real Banach space. We use $\langle p, x \rangle$ to denote the value of functional $p \in X^*$ at the vector $x \in X$. Let $\rho_X(\tau) = \sup \left\{ \frac{\|x+y\|}{2} + \frac{\|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau \right\}$. The function $\rho_X(\cdot) : \mathbb{R}^+ \to \mathbb{R}^+$ is referred to as the module of smoothness of X. We denote by $\mathfrak{B}_R(c)$ a closed ball with center c and radius R.

A set $A \subset X$ is said to be proximally smooth with constant R if the distance function $x \to \rho(x, A)$ is continuously differentiable on set $U(R, A) = \{x \in X : 0 < \rho(x, A) < R\}$.

By \mathfrak{M} denote the set of convex and Lipschitz continuous functions $\psi : [0, +\infty) \to [0, +\infty)$ such that $\psi(0) = 0$.

A set $A \subset X$ is said to be ψ -hypomotonic with constant R if for some $\varepsilon > 0$ for any $x_1, x_2 \in A$ such that $||x_1 - x_2|| \le \varepsilon$ and for any $p_1 \in N(x_1, A), p_2 \in N(x_2, A)$, such that $||p_1|| = ||p_2|| = 1$ the following inequality is true

$$\langle p_2 - p_1, x_2 - x_1 \rangle \ge -R\psi\left(\frac{\|x_2 - x_1\|}{R}\right)$$

where $N(a_0, A) = \{p \in X^* : \forall \varepsilon > 0 \exists \delta > 0 : \forall a \in A \cap \mathfrak{B}_{\delta}(a_0) \langle p, a - a_0 \rangle \leq \varepsilon ||a - a_0|| \}$. We denote by $\Omega_P(R)$ $(\Omega_N^{\psi}(R))$ the set of all closed proximally smooth (ψ -hypomotonic) sets with constant R in X.

Theorem 1 Let X be a uniformly convex and uniformly smooth Banach space and $\psi \in \mathfrak{M}$, then the following conditions are equivalent:

1) there exists k > 0 such that $\Omega_P(1) \subset \Omega_N^{k\psi}(1)$; 2) $\rho_X(\tau) = O(\psi(\tau)) \quad (\tau \to 0).$

Theorem 2 Let X be a uniformly convex and uniformly smooth Banach space and $\psi \in \mathfrak{M}$, then the following conditions are equivalent:

1) there exists $k_1 > 0, k_2 > 0$ such that $\Omega_N^{k_1\psi}(1) \subset \Omega_P(1) \subset \Omega_N^{k_2\psi}(1)$; 2) X is isomorphic to the Hilbert space.

¹Supported by the Russian Foundation for Basic Research, grant 13-01-00295