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Abstract: Let E be a real Banach space. We say that the subset M of E is a quasiball
if M is closed convex and 0 is in the interior of M . The M-distance from the point x0
to the set A is %M(x0, A) = infa∈A µM(x0 − a), where µM(x) = inf {t > 0 | x ∈ tM} is the
Minkowski functional. For a set A ⊂ E and a point x0 ∈ E the M-projection of x0 onto
A is PM(x0, A) =

{
a ∈ A

∣∣ µM(x0 − a) ≤ %M(x0, A)
}

. The set of unit M-normals for a set
A ⊂ E at a point a ∈ A is defined as N1

M(a,A) = {z ∈ ∂M | ∃t > 0 : a ∈ PM(a + tz, A)}.
A set A ⊂ E is called weakly convex with respect to (w.r.t.) the quasiball M ⊂ E if
a ∈ PM(a + z, A) for all a ∈ A, z ∈ N1

M(a,A). If M = {x ∈ E | ‖x‖ ≤ r}, then the
M -projection is the metric projection, the class of weakly convex sets is exactly the class
of r-proximally smooth sets, investigated by Clarke, Stern, Wolenski, Bernard, Thibault,
Zlateva and others. Colombo, Mordukhovich, Goncharov and Pereira studied the properties
of weakly convex sets w.r.t. a nonsymmetric bounded quasiball. For a function γ : E →
R∪{+∞} and a number r > 0 we consider the function γr(x) = r·γ

(
x
r

)
. The γ-predifferential

of a function f : E → R ∪ {+∞} at a point x ∈ dom f := {x ∈ E | f(x) ∈ R} is defined by
πγf(x) = {u ∈ dom γ | ∃r > 0 : (f�γr)(x+ru) = f(x)+γr(ru)}, where f�g is the infimal
convolution of functions f and g. A function f : E → R∪{+∞} is said to be weakly convex
w.r.t. γ : E → R ∪ {+∞} if (f � γ)(x + u) = f(x) + γ(u) for all x ∈ dom f , u ∈ πγf(x).
Note that in a Hilbert space the weak convexity w.r.t. the function γ(x) = σ‖x‖2 (σ > 0) is
equivalent to weak convexity studied by Vial and lower-C2 property due to Rockafellar.
Theorem 1. Let γ : E → R ∪ {+∞} be a convex lower semicontinuous (l.s.) function,
continuous at 0 and γ(0) < 0. Then the function f : E → R∪{+∞} is weakly convex w.r.t.
the function γ if and only if its epigraph epi f is weakly convex w.r.t. the quasiball epi γ.
Theorem 2. Let γ : E → R be a coercive function, bounded on any bounded set, and
uniformly convex on any convex bounded set. Suppose that a function f : E → R ∪ {+∞}
is l.s. and weakly convex w.r.t.γ, dom (f � γ) 6= ∅. The function f is weakly convex w.r.t.γ

if and only if for any r ∈ (0, 1) and x0 ∈ E the problem minu∈E

(
f(u) + γr(x0 − u)

)
is well

posed (i.e. every minimizing sequence of this problem converges to the minimizer).
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