27th IFIP TC7 Conference 2015 on System Modelling and Optimization

Some aspects of Variational Analysis and Applications

Properties and applications of weakly convex functions and sets¹

Grigorii E. Ivanov

Moscow Institute of Physics and Technology

g.e.ivanov@mail.ru

Abstract: Let E be a real Banach space. We say that the subset M of E is a quasiball if M is closed convex and 0 is in the interior of M. The M-distance from the point x_0 to the set A is $\rho_M(x_0, A) = \inf_{a \in A} \mu_M(x_0 - a)$, where $\mu_M(x) = \inf \{t > 0 \mid x \in tM\}$ is the Minkowski functional. For a set $A \subset E$ and a point $x_0 \in E$ the *M*-projection of x_0 onto A is $P_M(x_0, A) = \{a \in A \mid \mu_M(x_0 - a) \leq \varrho_M(x_0, A)\}$. The set of unit *M*-normals for a set $A \subset E$ at a point $a \in A$ is defined as $N_M^1(a, A) = \{z \in \partial M \mid \exists t > 0 : a \in P_M(a + tz, A)\}.$ A set $A \subset E$ is called *weakly convex* with respect to (w.r.t.) the quasiball $M \subset E$ if $a \in P_M(a+z,A)$ for all $a \in A, z \in N^1_M(a,A)$. If $M = \{x \in E \mid ||x|| \leq r\}$, then the *M*-projection is the metric projection, the class of weakly convex sets is exactly the class of r-proximally smooth sets, investigated by Clarke, Stern, Wolenski, Bernard, Thibault, Zlateva and others. Colombo, Mordukhovich, Goncharov and Pereira studied the properties of weakly convex sets w.r.t. a nonsymmetric bounded quasiball. For a function $\gamma: E \to \infty$ $\mathbb{R} \cup \{+\infty\}$ and a number r > 0 we consider the function $\gamma_r(x) = r \cdot \gamma\left(\frac{x}{r}\right)$. The γ -predifferential of a function $f: E \to \mathbb{R} \cup \{+\infty\}$ at a point $x \in \text{dom } f := \{x \in E \mid f(x) \in \mathbb{R}\}$ is defined by $\pi_{\gamma}f(x) = \{u \in \text{dom } \gamma \mid \exists r > 0: (f \boxplus \gamma_r)(x + ru) = f(x) + \gamma_r(ru)\}, \text{ where } f \boxplus g \text{ is the infimal}$ convolution of functions f and g. A function $f: E \to \mathbb{R} \cup \{+\infty\}$ is said to be weakly convex w.r.t. $\gamma : E \to \mathbb{R} \cup \{+\infty\}$ if $(f \boxplus \gamma)(x+u) = f(x) + \gamma(u)$ for all $x \in \text{dom } f, u \in \pi_{\gamma} f(x)$. Note that in a Hilbert space the weak convexity w.r.t. the function $\gamma(x) = \sigma ||x||^2$ ($\sigma > 0$) is equivalent to weak convexity studied by Vial and lower- C^2 property due to Rockafellar. **Theorem 1.** Let $\gamma : E \to \mathbb{R} \cup \{+\infty\}$ be a convex lower semicontinuous (l.s.) function, continuous at 0 and $\gamma(0) < 0$. Then the function $f: E \to \mathbb{R} \cup \{+\infty\}$ is weakly convex w.r.t. the function γ if and only if its epigraph epi f is weakly convex w.r.t. the quasiball epi γ . **Theorem 2.** Let $\gamma : E \to \mathbb{R}$ be a coercive function, bounded on any bounded set, and uniformly convex on any convex bounded set. Suppose that a function $f: E \to \mathbb{R} \cup \{+\infty\}$ is l.s. and weakly convex w.r.t. γ , dom $(f \boxplus \gamma) \neq \emptyset$. The function f is weakly convex w.r.t. γ if and only if for any $r \in (0,1)$ and $x_0 \in E$ the problem $\min_{u \in E} \left(f(u) + \gamma_r(x_0 - u) \right)$ is well

posed (i.e. every minimizing sequence of this problem converges to the minimizer).

¹Supported by the Russian Foundation for Basic Research, grant 13-01-00295