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Abstract: Let E be a real Banach space. We say that the subset M of E is a quasiball
if M is closed convex and 0 is in the interior of M. The M -distance from the point xg
to the set A is onr(zo, A) = infaea par(xg — @), where pup(x) = inf{t > 0| z € tM} is the
Minkowski functional. For a set A C E and a point o € E the M -projection of xy onto
Ais Py(wo, A) = {a € A| pn(zo — a) < om(xo, A)}. The set of unit M-normals for a set
A C E at a point a € A is defined as N} (a,A) = {2 € OM| 3t > 0: a € Py(a+tz,A)}.
A set A C E is called weakly conver with respect to (w.r.t.) the quasiball M C E if
a € Pyla+ z,A) for all a € A, z € Niy(a,A). If M = {z € E| |z| < r}, then the
M-projection is the metric projection, the class of weakly convex sets is exactly the class
of r-proximally smooth sets, investigated by Clarke, Stern, Wolenski, Bernard, Thibault,
Zlateva and others. Colombo, Mordukhovich, Goncharov and Pereira studied the properties
of weakly convex sets w.r.t. a nonsymmetric bounded quasiball. For a function v : £ —
RU{+00} and a number r > 0 we consider the function 7, (x) = r-y (%) The v-predifferential
of a function f: E — RU {400} at a point x € dom f := {z € E'| f(x) € R} is defined by
mf(z) ={uedomy|Ir>0: (fBY)(z+ru) = f(x)+-(ru)}, where fHg is the infimal
convolution of functions f and g. A function f : F — RU{+o0} is said to be weakly convex
wrt. vy E— RU{+oo} if (fB~Y)(zr+u) = f(x) +7(u) for all z € dom f, u € m, f(z).
Note that in a Hilbert space the weak convexity w.r.t. the function v(z) = oljz||* (¢ > 0) is
equivalent to weak convexity studied by Vial and lower-C? property due to Rockafellar.
Theorem 1. Let v : E — RU {400} be a convex lower semicontinuous (l.s.) function,
continuous at 0 and v(0) < 0. Then the function f: E — RU {400} is weakly convex w.r.t.
the function ~v if and only if its epigraph epi f is weakly convexr w.r.t. the quasiball epi .
Theorem 2. Let v : E — R be a coercive function, bounded on any bounded set, and
uniformly convex on any convex bounded set. Suppose that a function f: E — RU {400}
is I.s. and weakly convex w.r.t.~y, dom (f B~) # 0. The function f is weakly convex w.r.t.~y

if and only if for any r € (0,1) and xy € E the problem min,¢p (f(u) + (g — u)) is well

posed (i.e. every minimizing sequence of this problem converges to the minimizer).
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