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Abstract: In the past decades, several direct constructions of complete metric spaces of
shapes and geometries (cf., for instance, M. C. Delfour and J.-P. Zolésio [3]) and, more
recently, additional new ones (cf., M. C. Delfour [2]) have been given without appealing
to the classical notions of atlases or smooth manifolds encountered in classical Differential
Geometry. Since, at best, such spaces are groups, the issue of making sense of tangent
spaces and differentials naturally arises not only for “differentiable” functions but also for
some classes of “non-differentiable” functions.
In that context, the notion of differentiable function introduced by J. Hadamard [7] is es-
pecially interesting since it implicitly involves the construction of trajectories and tangent
vectors to trajectories living in the space under investigation. His definition was relaxed
by M. Fréchet [5] in 1937 by dropping the requirement that the differential be linear with
respect to the direction or tangent vector. A vast litterature on differentials on topological
spaces followed (cf., for instance, the surveys of V. I. Averbuh and O. G. Smoljanov [1],
M. Z. Nashed [9]). The definition of Fréchet was further relaxed to the notion of semidiffer-
ential which nicely handles convex and semiconvex functions while preserving two essential
properties of the classical diferential calculus: the continuity of the function and the chain
rule for the composition of functions.
The relaxation of the original definition has far reaching consequences. For a function f :
A → B between two sets A and B, the semidifferential is no longer required to be linear.
De facto, this relaxes the requirement that the tangent spaces in each points of A and B be
linear spaces. As a result, it is sufficient to consider tangent cones to A and B such as the
Bouligand’s tangent cone to make sense of semidifferentials. Shortcircuiting the requirement
of a smooth manifold makes it possible to directly study the tangent cones to metric spaces
of shapes and geometries.
In this paper we review classical and new results. In particular, we show that some currently
available metric spaces only have tangent cones made up of elements related to the “currents”
introduced by H. Federer and W. H. Fleming [4]. In that perspective, it is remarkable
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that the ground-breaking notion of topological derivative of J. Soko lowski and A. Zȯchowski
[10] is in fact a semidifferential on the metric space of characteristic functions and that the
tangent space (of admissible directions) contains not only elements that create holes but also
“currents” leading to topological perturbations along curves and surfaces that can break the
connectivity of the set.
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[7] J. Hadamard, La notion de différentielle dans l’enseignement, Scripta Univ. Ab. Bib.,
Hierosolymitanarum, Jerusalem, 1923. Reprinted in the Mathematical Gazette 19,
no. 236 (1935), 341–342.

[8] A. M. Micheletti, Metrica per famiglie di domini limitati e proprietà generiche degli
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[10] J. Soko lowski and A. Zȯchowski, On the topological derivative in shape optimization,
SIAM J. Control Optim. (4) 37 (1999), 1251-1272.

2


